
Efficient Implementations of Apriori and Eclat

Christian Borgelt

Department of Knowledge Processing and Language Engineering
School of Computer Science, Otto-von-Guericke-University of Magdeburg

Universiẗatsplatz 2, 39106 Magdeburg, Germany
Email: borgelt@iws.cs.uni-magdeburg.de

Abstract

Apriori and Eclat are the best-known basic algorithms
for mining frequent item sets in a set of transactions. In this
paper I describe implementations of these two algorithms
that use several optimizations to achieve maximum perfor-
mance, w.r.t. both execution time and memory usage. The
Apriori implementation is based on a prefix tree represen-
tation of the needed counters and uses a doubly recursive
scheme to count the transactions. The Eclat implementation
uses (sparse) bit matrices to represent transactions lists and
to filter closed and maximal item sets.

1. Introduction

Finding frequent item sets in a set of transactions is a
popular method for so-called market basket analysis, which
aims at finding regularities in the shopping behavior of
customers of supermarkets, mail-order companies, on-line
shops etc. In particular, it is tried to identify sets of prod-
ucts that are frequently bought together.

The main problem of finding frequent item sets, i.e., item
sets that are contained in a user-specified minimum num-
ber of transactions, is that there are so many possible sets,
which renders näıve approaches infeasible due to their un-
acceptable execution time. Among the more sophisticated
approaches two algorithms known under the names of Apri-
ori [1, 2] and Eclat [8] are most popular. Both rely on a top-
down search in the subset lattice of the items. An example
of such a subset lattice for five items is shown in figure 1
(empty set omitted). The edges in this diagram indicate sub-
set relations between the different item sets.

To structure the search, both algorithms organize the sub-
set lattice as a prefix tree, which for five items is shown
in Figure 2. In this tree those item sets are combined in a
node which have the same prefix w.r.t. to some arbitrary,
but fixed order of the items (in the five items example, this

order is simply a, b, c, d, e). With this structure, the item
sets contained in a node of the tree can be constructed eas-
ily in the following way: Take all the items with which the
edges leading to the node are labeled (this is the common
prefix) and add an item that succeeds, in the fixed order of
the items, the last edge label on the path. Note that in this
way we need only one item to distinguish between the item
sets represented in one node, which is relevant for the im-
plementation of both algorithms.

The main differences between Apriori and Eclat are how
they traverse this prefix tree and how they determine the
supportof an item set, i.e., the number of transactions the
item set is contained in. Apriori traverses the prefix tree in
breadth first order, that is, it first checks item sets of size 1,
then item sets of size 2 and so on. Apriori determines the
support of item sets either by checking for each candidate
item set which transactions it is contained in, or by travers-
ing for a transaction all subsets of the currently processed
size and incrementing the corresponding item set counters.
The latter approach is usually preferable.

Eclat, on the other hand, traverses the prefix tree in depth
first order. That is, it extends an item set prefix until it
reaches the boundary between frequent and infrequent item
sets and then backtracks to work on the next prefix (in lex-
icographic order w.r.t. the fixed order of the items). Eclat
determines the support of an item set by constructing the
list of identifiers of transactions that contain the item set. It
does so by intersecting two lists of transaction identifiers of
two item sets that differ only by one item and together form
the item set currently processed.

2. Apriori Implementation

My Apriori implementation uses a data structure that di-
rectly represents a prefix tree as it is shown in figure 2.
This tree is grown top-down level by level, pruning those
branches that cannot contain a frequent item set [4].



2.1. Node Organization

There are different data structures that may be used for
the nodes of the prefix tree. In the first place, we may use
simple vectors of integer numbers to represent the counters
for the item sets. The items (note that we only need one item
to distinguish between the counters of a node, see above) are
not explicitly stored in this case, but are implicit in the vec-
tor index. Alternatively, we may use vectors, each element
of which consists of an item identifier (an integer number)
and a counter, with the vector elements being sorted by the
item identifier.

The first structure has the advantage that we do not need
any memory to store the item identifiers and that we can
very quickly find the counter for a given item (simply use
the item identifier as an index), but it has the disadvantage
that we may have to add “unnecessary” counters (i.e., coun-
ters for item sets, of which we know from the information
gathered in previous steps that they must be infrequent), be-
cause the vector may not have “gaps”. This problem can
only partially be mitigated by enhancing the vector with an
offset to the first element and a size, so that unnecessary
counters at the margins of the vector can be discarded. The
second structure has the advantage that we only have the
counters we actually need, but it has the disadvantage that
we need extra memory to store the item identifiers and that
we have to carry out a binary search in order to find the
counter corresponding to a given item.

A third alternative would be to use a hash table per node.
However, although this reduces the time needed to access a
counter, it increases the amount of memory needed, because
for optimal performance a hash table must not be too full.
In addition, it does not allow us to exploit easily the order
of the items in the counting process (see below). Therefore
I do not consider this alternative here.

Obviously, if we want to optimize speed, we should
choose simple counter vectors, despite the gap problem.

a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde

Figure 1. A subset lattice for five items (empty
set omitted).

If we want to optimize memory usage, we can decide dy-
namically, which data structure is more efficient in terms
of memory, accepting the higher counter access time due to
the binary search if necessary.

It should also be noted that we need a set of child point-
ers per node, at least for all levels above the currently added
one (in order to save memory, one should not create child
pointers before one is sure that one needs them). For orga-
nizing these pointers there are basically the same options as
for organizing the counters. However, if the counters have
item identifiers attached, there is an additional possibility:
We may draw on the organization of the counters, using
the same order of the items and leaving child pointers nil
if they are not needed. This can save memory, even though
we may have unnecessary nil pointers, because we do not
have to store item identifiers a second time.

2.2. Item Coding

It is clear that the way in which the items are coded (i.e.,
are assigned integer numbers as identifiers) can have a sig-
nificant impact on the gap problem for pure counter vectors
mentioned above. Depending on the coding we may need
large vectors with a lot of gaps or we may need only short
vectors with few gaps. A good heuristic approach to mini-
mize the number and the size of gaps seems to be this: It is
clear that frequent item sets contain items that are frequent
individually. Therefore it is plausible that we have only few
gaps if we sort the items w.r.t. their frequency, so that the in-
dividually frequent items receive similar identifiers if they
have similar frequency (and, of course, infrequent items are
discarded entirely). In this case it can be hoped that the off-
set/size representation of a counter vector can eliminate the
greater part of the unnecessary counters, because these can
be expected to cluster at the vector margins.

Extending this scheme, we may also consider to code the
items w.r.t. the number of frequent pairs (or even triples etc.)

a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde

a b c d

b c d c d d

c d d d

d

Figure 2. A prefix tree for five items (empty
set omitted).

2



they are part of, thus using additional information from the
second (or third etc.) level to improve the coding. This idea
can most easily be implemented for item pairs by sorting
the items w.r.t. the sum of the sizes of the transactions they
are contained in (with infrequent items discarded from the
transactions, so that this sum gives a value that is similar to
the number of frequent pairs, which, as these are heuristics
anyway, is sufficient).

2.3. Recursive Counting

The prefix tree is not only an efficient way to store the
counters, it also makes processing the transactions very sim-
ple, especially if we sort the items in a transaction ascend-
ingly w.r.t. their identifiers. Then processing a transaction is
a simple doubly recursive procedure: To process a transac-
tion for a node of the tree, (1) go to the child corresponding
to the first item in the transaction and process the remainder
of the transaction recursively for that child and (2) discard
the first item of the transaction and process it recursively for
the node itself (of course, the second recursion is more eas-
ily implemented as a simple loop through the transaction).
In a node on the currently added level, however, we incre-
ment a counter instead of proceeding to a child node. In this
way on the current level all counters for item sets that are
part of a transaction are properly incremented.

By sorting the items in a transaction, we can also apply
the following optimizations (this is a bit more difficult—or
needs additional memory—if hash tables are used to orga-
nize the counters and thus explains why I am not consider-
ing hash tables): (1) We can directly skip all items before
the first item for which there is a counter in the node, and (2)
we can abort the recursion if the first item of (the remainder
of) a transaction is beyond the last one represented in the
node. Since we grow the tree level by level, we can even
go a step further: We can terminate the recursion once (the
remainder of) a transaction is too short to reach the level
currently added to the tree.

2.4. Transaction Representation

The simplest way of processing the transactions is to
handle them individually and to apply to each of them the
recursive counting procedure described in the preceding
section. However, the recursion is a very expensive pro-
cedure and therefore it is worthwhile to consider how it can
be improved. One approach is based on the fact that of-
ten there are several similar transactions, which lead to a
similar program flow when they are processed. By organiz-
ing the transactions into a prefix tree (an idea that has also
been used in [6] in a different approach) transactions with
the same prefix can be processed together. In this way the
procedure for the prefix is carried out only once and thus

considerable performance gains can result. Of course, the
gains have to outweigh the additional costs of constructing
such a transaction tree to lead to an overall gain.

2.5. Transaction Filtering

It is clear that in order to determine the counter values on
the currently added level of the prefix tree, we only need the
items that are contained in those item sets that are frequent
on the preceding level. That is, to determine the support of
item sets of sizek, we only need those items that are con-
tained in the frequent item sets of sizek−1. All other items
can be removed from the transactions. This has the advan-
tage that the transactions become smaller and thus can be
counted more quickly, because the size of a transaction is a
decisive factor for the time needed by the recursive counting
scheme described above.

However, this can only be put to work easily if the trans-
actions are processed individually. If they are organized as
a prefix tree, a possibly costly reconstruction of the tree is
necessary. In this case one has to decide whether to con-
tinue with the old tree, accepting the higher counting costs
resulting from unnecessary items, or whether rebuilding the
tree is preferable, because the costs for the rebuild are out-
weighed by the savings resulting from the smaller and sim-
pler tree. Good heuristics seem to be to rebuild the tree if

nnew

ncurr

ttree
tcount

< 0.1,

wherencurr is the number of items in the current transac-
tion tree,nnew is the number of items that will be contained
in the new tree,ttree is the time that was needed for build-
ing the current tree andtcount is the time that was needed
for counting the transactions in the preceding step. The
constant 0.1 was determined experimentally and on average
seems to lead to good results (see also Section 4).

2.6. Filtering Closed and Maximal Item Sets

A frequent item set is calledclosedif there is no super-
set that has the same support (i.e., is contained in the same
number of transactions). Closed item sets capture all infor-
mation about the frequent item sets, because from them the
support of any frequent item set can be determined.

A frequent item set is calledmaximalif there is no super-
set that is frequent. Maximal item sets define the boundary
between frequent and infrequent sets in the subset lattice.

Any frequent item set is often also called afree item set
to distinguish it from closed and maximal ones.

In order to find closed and maximal item sets with Apri-
ori one may use a simple filtering approach on the prefix
tree: The final tree is traversed top-down level by level
(breadth first order). For each frequent item set all subsets

3



with one item less are traversed and marked as not to be re-
ported if they have the same support (closed item sets) or
unconditionally (maximal item sets).

3. Eclat Implementation

My Eclat implementation represents the set of transac-
tions as a (sparse) bit matrix and intersects rows to deter-
mine the support of item sets. The search follows a depth
first traversal of a prefix tree as it is shown in Figure 2.

3.1. Bit Matrices

A convenient way to represent the transactions for the
Eclat algorithm is a bit matrix, in which each row corre-
sponds to an item, each column to a transaction (or the other
way round). A bit is set in this matrix if the item corre-
sponding to the row is contained in the transaction corre-
sponding to the column, otherwise it is cleared.

There are basically two ways in which such a bit matrix
can be represented: Either as a true bit matrix, with one
memory bit for each item and transaction, or using for each
row a list of those columns in which bits are set. (Obvi-
ously the latter representation is equivalent to using a list
of transaction identifiers for each item.) Which representa-
tion is preferable depends on the density of the dataset. On
32 bit machines the true bit matrix representation is more
memory efficient if the ratio of set bits to cleared bits is
greater than 1:31. However, it is not advisable to rely on
this ratio in order to decide between a true and a sparse bit
matrix representation, because in the search process, due
to the intersections carried out, the number of set bits will
decrease. Therefore a sparse representation should be used
even if the ratio of set bits to cleared bits is greater than
1:31. In my current implementation a sparse representation
is preferred if the ratio is greater than 1:7, but this behavior
can be changed by a user.

A more sophisticated option would be to switch to the
sparse representation of a bit matrix during the search once
the ratio of set bits to cleared bits exceeds 1:31. However,
such an automatic switch, which involves a rebuild of the
bit matrix, is not implemented in the current version.

3.2. Search Tree Traversal

As already mentioned, Eclat searches a prefix tree like
the one shown in Figure 2 in depth first order. The tran-
sition of a node to its first child consists in constructing a
new bit matrix by intersecting the first row with all follow-
ing rows. For the second child the second row is intersected
with all following rows and so on. The item correspond-
ing to the row that is intersected with the following rows
thus is added to form the common prefix of the item sets

processed in the corresponding child node. Of course, rows
corresponding to infrequent item sets should be discarded
from the constructed matrix, which can be done most con-
veniently if we store with each row the corresponding item
identifier rather than relying on an implicit coding of this
item identifier in the row index.

Intersecting two rows can be done by a simple logical
and on a fixed length integer vector if we work with a true
bit matrix. During this intersection the number of set bits
in the intersection is determined by looking up the number
of set bits for given word values (i.e., 2 bytes, 16 bits) in a
precomputed table. For a sparse representation the column
indices for the set bits should be sorted ascendingly for effi-
cient processing. Then the intersection procedure is similar
to the merge step of merge sort. In this case counting the set
bits is straightforward.

3.3. Item Coding

As for Apriori the way in which items are coded has an
impact on the execution time of the Eclat algorithm. The
reason is that the item coding not only affects the num-
ber and the size of gaps in the counter vectors for Apriori,
but also the structure of theprunedprefix tree and thus the
structure of Eclat’s search tree. Sorting the items usually
leads to a better structure. For the sorting there are basi-
cally the same options as for Apriori (see Section 2.2).

3.4. Filtering Closed and Maximal Item Sets

Determining closed and maximal item sets with Eclat is
slightly more difficult than with Apriori, because due to the
backtrack Eclat “forgets” everything about a frequent item
set once it is reported. In order to filter for closed and max-
imal item sets, one needs a structure that records these sets,
and which allows to determine quickly whether in this struc-
ture there is an item set that is a superset of a newly found
set (and whether this item set has the same support if closed
item sets are to be found).

In my implementation I use the following approach to
solve this problem: Frequent item sets are reported in a node
of the search treeafter all of its child nodes have been pro-
cessed. In this way it is guaranteed that all possible super-
sets of an item set that is about to be reported have already
been processed. Consequently, we can maintain a repos-
itory of already found (closed or maximal) item sets and
only have to search this repository for a superset of the item
set in question. The repository can only grow (we never
have to remove an item set from it), because due to the re-
port order a newly found item set cannot be a superset of an
item set in the repository.

For the repository one may use a bit matrix in the same
way as it is used to represent the transactions: Each row

4



corresponds to an item, each column to a found (closed or
maximal) frequent item set. The superset test consists in in-
tersecting those rows of this matrix that correspond to the
items in the frequent item set in question. If the result is
empty, there is no superset in the repository, otherwise there
is (at least) one. (Of course, the intersection loop is termi-
nated as soon as an intersection gets empty.)

To include the information about the support for closed
item sets, an additional row of the matrix is constructed,
which contains set bits in those columns that correspond to
item sets having the same support as the one in question.
With this additional row the intersection process is started.

It should be noted that the superset test can be avoided
if any direct descendant (intersection product) of an item
set has the same support (closed item sets) or is frequent
(maximal item set).

In my implementation the repository bit matrix uses the
same representation as the matrix that represents the trans-
actions. That is, either both are true bit matrices or both are
sparse bit matrices.

4. Experimental Results

I ran experiments with both programs on five data sets,
which exhibit different characteristics, so that the advan-
tages and disadvantages of the two approaches and the dif-
ferent optimizations can be observed. The data sets I used
are: BMS-Webview-1 (a web click stream from a leg-care
company that no longer exists, which has been used in the
KDD cup 2000 [7, 9]), T10I4D100K (an artificial data set
generated with IBM’s data generator [10]), census (a data
set derived from an extract of the US census bureau data
of 1994, which was preprocessed by discretizing numeric
attributes), chess (a data set listing chess end game posi-
tions for king vs. king and rook), and mushroom (a data
set describing poisonous and edible mushrooms by differ-
ent attributes). The last three data sets are available from
the UCI machine learning repository [3]. The discretiza-
tion of the numeric attributes in the census data set was
done with a shell/gawk script that can be found on the
WWW page mentioned below. For the experiments I used
an AMD Athlon XP 2000+ machine with 756 MB main
memory running S.u.S.E. Linux 8.2 and gcc version 3.3.

The results for these data sets are shown in Figures 3
to 7. Each figure consists of five diagrams, a to e, which are
organized in the same way in each figure. Diagram a shows
the decimal logarithm of the number of free (solid), closed
(short dashes), and maximal item sets (long dashes) for dif-
ferent support values. From these diagrams it can already be
seen that the data sets have clearly different characteristics.
Only census and chess appear to be similar.

Diagrams b and c show the decimal logarithm of the ex-
ecution time in seconds for different parameterizations of

Apriori (diagram b) and Eclat (diagram c). To ease the com-
parison of the two diagrams, the default parameter curve for
the other algorithm (the solid curve in its own diagram) is
shown in grey in the background.

The curves in diagram b represent the following settings:

solid: Items sorted ascendingly w.r.t. the sum of the sizes of
the transactions they are contained in; prefix tree to repre-
sent the transactions, which is rebuild every time the heuris-
tic criterion described in section 2.5 is fulfilled.
short dashes:Like solid curve, prefix tree used to represent
the transactions, but never rebuild.
long dashes:Like solid curve, but transactions arenot or-
ganized as a prefix tree; items that are no longer needed are
not removed from the transactions.
dense dots:Like long dash curve, but items sorted ascend-
ingly w.r.t. their frequency in the transactions.

In diagram b it is not distinguished whether free, closed,
or maximal item sets are to be found, because the time for
filtering the item sets is negligible compared to the time
needed for counting the transactions (only a small differ-
ence would be visible in the diagrams, which derives mainly
from the fact that less time is needed to write the smaller
number of closed or maximal item sets).

In diagram c the solid, short, and long dashes curve show
the results for free, closed, and maximal item sets, respec-
tively, with one representation of the bit matrix, the dense
dots curve the results for free item sets for the other rep-
resentation (cf. section 3.1). Whether the solid, short, and
long dashes curve refer to a true bit matrix and the dense
dots curve to a sparse one or the other way round depends
on the data set and is indicated in the corresponding section
below.

Diagrams d and e show the decimal logarithm of the
memory in bytes used for different parameterizations of
Apriori (diagram d) and Eclat (diagram e). Again the grey
curve refers to the default parameter setting of the other al-
gorithm (the solid curve in its own diagram).

The curves in diagram d represent the following settings:

solid: Items sorted ascendingly w.r.t. the sum of the sizes of
the transaction they are contained in; transactions organized
as a prefix tree; memory saving organization of the prefix
tree nodes as described in section 2.1.
short dashes:Like solid, butno memory saving organiza-
tion of the prefix tree nodes (always pure vectors).
long dashes:Like short dashes, but items sorteddescend-
ingly w.r.t. the sum of the sizes of the transaction they are
contained in.
dense dots:Like long dashes, but itemsnot sorted.

Again it is not distinguished whether free, closed, or
maximal item sets are to be found, because this has no influ-
ence on the memory usage. The meaning of the line styles
in diagram e is the same as in diagram c (see above).

5



34 35 36 37 38 39 40 41 42 43 44 45

4

5

6

a

34 35 36 37 38 39 40 41 42 43 44 45

0

1

2

b

34 35 36 37 38 39 40 41 42 43 44 45

0

1

2

c

34 35 36 37 38 39 40 41 42 43 44 45

6

7

8

d

34 35 36 37 38 39 40 41 42 43 44 45

6

7

8

e

Figure 3. Results on BMS-Webview-1

BMS-Webview-1: Characteristic for this data set is the di-
vergence of the number of free, closed, and maximal item
sets for lower support values. W.r.t. the execution time of
Apriori this data set shows perfectly the gains that can re-
sult from the different optimizations. Sorting the items w.r.t.
the sum of transactions sizes (long dashes in diagram b)
improves over sorting w.r.t. simple frequency (dense dots),
organizing the transactions as a prefix tree (short dashes)
improves further, removing no longer needed items yields
another considerable speed-up (solid curve). However, for
free and maximal item sets and a support less than 44 trans-
actions Eclat with a sparse bit matrix representation (long
dashes and solid curve in diagram c) is clearly better than
Apriori, which also needs a lot more memory. Only for
closed item sets Apriori is the method of choice (Eclat:
short dashes in diagram c), which is due to the more expen-
sive filtering with Eclat. Using a true bit matrix with Eclat
is clearly not advisable as it performs worse than Apriori
and down to a support of 39 transactions even needs more
memory (dense dots in diagrams c and e).

T10I4D100K: The numbers of all three types of item sets
sharply increase for lower support values; there is no di-
vergence as for BMS-Webview-1. For this data set Apri-
ori outperforms Eclat, although for a support of 5 transac-
tions Eclat takes the lead for free item sets. For closed and
maximal item sets Eclat cannot challenge Apriori. It is re-
markable that for this data set rebuilding the prefix tree for
the transactions in Apriori slightly degrades performance
(solid vs. short dashes in diagram b, with the dashed curve
almost covered by the solid one). For Eclat a sparse bit ma-
trix representation (solid, short, and long dashes curve in
diagrams c and e) is preferable to a true bit matrix (dense
dots). (Remark: In diagram b the dense dots curve is almost
identical to the long dashes curve and thus is covered.)

Census:This data set is characterized by an almost constant
ratio of the numbers of free, closed, and maximal item sets,
which increase not as sharply as for T10I4D100K. For free
item sets Eclat with a sparse bit matrix representation (solid
curve in diagram c) always outperforms Apriori, while it
clearly loses against Apriori for closed and maximal item
sets (long and short dashes curves in diagrams c and e, the
latter of which is not visible, because it lies outside the dia-
gram — the execution time is too large due to the high num-
ber of closed item sets). For higher support values, how-
ever, using a true bit matrix representation with Eclat to find
maximal item sets (sparse dots curves in diagrams c and e)
comes close to being competitive with Apriori. Again it is
remarkable that rebuilding the prefix tree of transactions in
Apriori slightly degrades performance.

Chess:W.r.t. the behavior of the number of free, closed, and
maximal item sets this dataset is similar to census, although
the curves are bend the other way. The main difference to
the results for census are that for this data set a true bit ma-

6



5 10 15 20 25 30 35 40 45 50 55 60

4

5

6
a

5 10 15 20 25 30 35 40 45 50 55 60

1

2

b

5 10 15 20 25 30 35 40 45 50 55 60

1

2

c

5 10 15 20 25 30 35 40 45 50 55 60

7

8

d

5 10 15 20 25 30 35 40 45 50 55 60

7

8

e

Figure 4. Results on T10I4D100K

10 20 30 40 50 60 70 80 90 100

5

6

7 a

10 20 30 40 50 60 70 80 90 100

1

2

b

10 20 30 40 50 60 70 80 90 100

1

2

c

10 20 30 40 50 60 70 80 90 100

7

8

d

10 20 30 40 50 60 70 80 90 100

7

8

e

Figure 5. Results on census

7



1500 1600 1700 1800 1900 2000

4

5

6
a

1500 1600 1700 1800 1900 2000

0

1

2

b

1500 1600 1700 1800 1900 2000

0

1

2

c

1500 1600 1700 1800 1900 2000

5

6

7

d

1500 1600 1700 1800 1900 2000

5

6

7

e

Figure 6. Results on chess

trix representation for Eclat (solid, short, and long dashes
curves in diagrams c and e) is preferable to a sparse one
(dense dots), while for census it is the other way round. The
true bit matrix representation also needs less memory, in-
dicating a very dense data set. Apriori can compete with
Eclat only when it comes to closed item sets, where it per-
forms better due to its more efficient filtering of the fairly
high number of closed item sets.

Mushroom: This data set differs from the other four in the
position of the number of closed data sets between the num-
ber of free and maximal item sets. Eclat with a true bit ma-
trix representation (solid, short, and long dashes curves in
diagrams c and e) outperforms Eclat with a sparse bit ma-
trix representation (dense dots), which in turn outperforms
Apriori. However, the sparse bit matrix (dense dots in di-
agram c) gains ground towards lower support values, mak-
ing it likely to take the lead for a minimum support of 100
transactions. Even for closed and maximal item sets Eclat is
clearly superior to Apriori, which is due to the small num-
ber of closed and maximal item sets, so that the filtering is
not a costly factor. (Remark: In diagram b the dense dots
curve is almost identical to the long dashes curve and thus
is covered. In diagram d the short dashes curve, which lies
over the dense dots curve, is covered the solid one.)

5. Conclusions

For free item sets Eclat wins the competition w.r.t. ex-
ecution time on four of the five data sets and it always
wins w.r.t. memory usage. On the only data set on which
it loses the competition (T10I4D100K), it takes the lead for
the lowest minimum support value tested, indicating that for
lower minimum support values it is the method of choice,
while for higher minimum support values its disadvantage
is almost negligible (note that for this data set all execution
times are less than 30s).

For closed item sets the more efficient filtering gives
Apriori a clear edge w.r.t. execution time, making it win
on all five data sets. For maximal item sets the picture is
less clear. If the number of maximal item sets is high, Apri-
ori wins due to its more efficient filtering, while Eclat wins
for a lower number of maximal item sets due to its more
efficient search.

6. Programs

The implementations of Apriori and Eclat described in
this paper (WindowsTM and LinuxTM executables as well as
the source code) can be downloaded free of charge at

http://fuzzy.cs.uni-magdeburg.de/˜borgelt/software.html
The special program versions submitted to this workshop
rely on the default parameter settings of these programs
(solid curves in the diagrams b to e of Section 4).

8



200 300 400 500 600 700 800 900 1000

3

4

5

6

7 a

200 300 400 500 600 700 800 900 1000

0

1

2

3
b

200 300 400 500 600 700 800 900 1000

0

1

2

3 c

200 300 400 500 600 700 800 900 1000

6

7

8

d

200 300 400 500 600 700 800 900 1000

6

7

8

e

Figure 7. Results on mushroom

References

[1] R. Agrawal, T. Imielienski, and A. Swami. Min-
ing Association Rules between Sets of Items in Large
Databases.Proc. Conf. on Management of Data, 207–
216. ACM Press, New York, NY, USA 1993

[2] A. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and
A. Verkamo. Fast Discovery of Association Rules. In:
[5], 307–328

[3] C.L. Blake and C.J. Merz.UCI Repository of Machine
Learning Databases. Dept. of Information and Com-
puter Science, University of California at Irvine, CA,
USA 1998
http://www.ics.uci.edu/ mlearn/MLRepository.html

[4] C. Borgelt and R. Kruse. Induction of Association
Rules: Apriori Implementation.Proc. 14th Conf. on
Computational Statistics (COMPSTAT). Berlin, Ger-
many 2002

[5] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and
R. Uthurusamy, eds.Advances in Knowledge Discov-
ery and Data Mining. AAAI Press / MIT Press, Cam-
bridge, CA, USA 1996

[6] J. Han, H. Pei, and Y. Yin. Mining Frequent Patterns
without Candidate Generation. In:Proc. Conf. on
the Management of Data (SIGMOD’00, Dallas, TX).
ACM Press, New York, NY, USA 2000

[7] R. Kohavi, C.E. Bradley, B. Frasca, L. Mason, and
Z. Zheng. KDD-Cup 2000 Organizers’ Report: Peel-
ing the Onion. SIGKDD Exploration 2(2):86–93.
2000.

[8] M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li.
New Algorithms for Fast Discovery of Association
Rules. Proc. 3rd Int. Conf. on Knowledge Discovery
and Data Mining (KDD’97), 283–296. AAAI Press,
Menlo Park, CA, USA 1997

[9] Z. Zheng, R. Kohavi, and L. Mason. Real World Per-
formance of Association Rule Algorithms. In:Proc.
7th Int. Conf. on Knowledge Discovery and Data Min-
ing (SIGKDD’01). ACM Press, New York, NY, USA
2001

[10] Synthetic Data Generation Code for Associations and
Sequential Patterns. http://www.almaden.ibm.com/
software/quest/Resources/index.shtml Intelligent
Information Systems, IBM Almaden Research Center

9


